劉則淵「知識経済と科学教育による興国戦略」[ ]完

<table>
<thead>
<tr>
<th>著者名</th>
<th>唐 向紅 山下 睦男</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>九州国際大学国際関係学論集</td>
</tr>
<tr>
<td>巻</td>
<td></td>
</tr>
<tr>
<td>号</td>
<td></td>
</tr>
<tr>
<td>ページ</td>
<td></td>
</tr>
<tr>
<td>発行年</td>
<td></td>
</tr>
<tr>
<td>URL</td>
<td><a href="http://id.nii.ac.jp/1265/00000233/">http://id.nii.ac.jp/1265/00000233/</a></td>
</tr>
</tbody>
</table>
[翻訳]
劉則洲『知識経済と科学教育による興国戦略』(II)完

唐 向 紅 
山 下 睦 男 共訳

V. 科学教育による興国戦略の基本的構成

1. 科学教育による興国戦略実施の必要性

経済のグローバル化、知識化および生態化という動向に直面し、中国は、強力な2つの根本的転換を推進している。すなわち、それは経済体制の伝統的計画経済体制から市場経済体制への転換と成長方式の粗放化から集約型への転換であり、そして、2つの基本的戦略を実施している。すなわち、それは科学教育による興国戦略と持続可能な発展戦略である。

そのために、中国政府は、市場経済体制に対応した国家による新しい革新システムの構築に努力しており、科学教育と経済の緊密な結合を実現させ、経済

第14図 20世紀の後半に世界を驚愕させた中国の経済成長
(1人当たりGDPの年平均増加率、％)

資料入手先：Maddison, 1995：世界銀行、2020年の中国、中国財政経済出版社、1997
第15図 1978年から1996年までの間に1人当たりGDP、4倍という目標を実現させた中国

1人当たり収入が2倍になる年収

社會の持続可能な発展を促進させようとしているのである。

20世紀の後半、とくに改革開放以降の最後の20年間、中国の経済成長の進展は世界の人々を驚愕させた。

その国の経済は、ほぼ安定して急速に増大し、20年足らずの間に、早期に1人当たりGDPが4倍にもなる目標を実現させ、世界的7%の耕地で22%の人口を扶養していると業績を達成させたのである（第14図と第15図を参照）。

21世紀へ突入すると、同時に新世紀の知識経済時代での貴重なチャンスを厳しく挑戦に直面するようになってきている。

我々は、社会主義現代化的第3番目の戦略目標に向って前進している。

極めて重要なことは、最初の2度にわたる10年間に、20世紀最後の20年間の発展の勢いを持続させることができるかどうかということである。

もし中国が、さらに開発途上国が有する後発の優位性を発揮させ、引き続き改革を深化させ、開放の規模を拡大させるならば、2020年の1人当たりGDPは、中進国レベルの所得を実現させる国家グループに入る可能性もある。

しかしながら、中国は依然として開発途上国であり、以下のような一連の挑戦に直面しているのである。すなわち、我々は、同時に工業化と情報化の二重の任務を実現させなければならないのである。また、中国の情報に関するインフラの発展は遅いけれども、極めて大きな格差が存在し、全国的に見ると依然として比較的低いレベルにあり、先進諸国との間で、東西の地域の間で、都市と農村の間で、異なる収入の家庭との間で、それらのすべての間で、明白な「数字の大きなギャップ」が存在しているのである。

さらに、主として国民経済の pembrokeである科学技術や教育という面で、21世紀が直面している挑戦は、とりわけ際立っている。すなわち、1人当たりの研究開発の支出と1人当たりの所得の国際比較から見ると、我々国は、その他の開発途上国と同じように、知識を主導した新しい経済からは遠く離れており、「情報の大きなギャップ」が存在しているだけでなく、さらに「知識の大きなギャップ」も存在していることが示されている。また、中国の平均文盲率の国際比較から見ると、中国の文盲率は急速に低下してきており、女性の所得は中進国のレベルより高く、男性の所得は、中進国のレベルより低いのである。しかしながら、安定的にかつ全面的に9年制の義務教育の普及の実現と青・壮年の文盲を一掃するという任務は、相変わらず極めて難しい問題である（第16図）。

第16図 未満率が年々低下している中、男性の文盲率より明らかに高い女性の文盲率

資料入手先：国務院女性・児童工作委員会（2001年6月12日）
全民族の科学技術の文化や思想・道徳の素質の向上とハイレベルな科学技術
の人材の育成は、中国の教育が直面している最大の挑戦であると言えよう。

そのため、科学教育による興国戦略を実施し、科学技術が第1の生産力であ
るという思想や、教育を根本とするという見方を堅持し、国民経済や社会の
発展を真に科学技術の進歩や労働者の素質の向上に依存するという軌道に転換
させることこそ1つの必然的選択である。

2. 科学教育による興国戦略の理論的基礎
(1) 邵小平による科学教育と経済との一体化思想

これは邵小平による一貫した思想であり、邵小平理論の重要な構成部分であ
る。邵小平の科学技術・教育と経済との一体化に関する論点は、主として次のように
ある。すなわち、経済を多少とも速く発展させるためには、必ず科学
技術と教育に依存しなければならない。4つの現代化を実現させるためには、科
学技術こそ社会の鍵であり、教育は基礎である。科学技術は、第1の生産力であ
り、ハイテクを発展させながら産業化を実現させる。知識人は、プロレタリアー
トの一員であり、「文化大革命」の中の「9番目」を第1に昇格させる。

これは、実質上、知識階級、或いは知力労働者が、第1の労働者であるという
観点を提起したことでもあった。知識を重視し、人材を重んじる。

教育は、現代化への役割、世界へ向かう、未来に向けてなければならない。

科学技術と経済との結合問題を解決し、さらに一歩前進させる必要があり、…
経済体制と科学技術体制、この両面の改革は、すべて生産力を開放するためで
ある。

新しい経済体制は、科学技術の進歩の体制にとって有利であるべき体制である。

新しい科学技術の体制は、経済発展の体制にとって有利であるべき体制である。

更に邵小平の科学教育と経済との一体化思想の核心の論点を再度まとめてみ
ると、相互に関連した「邵小平3原理」と言うことになる。すなわち、

第1原理：科学技術は、第1の生産力である。真っ先に現代の科学技術の知
識が、経済成長に対して第1位の作用を提示し、知識経済の時代の登場を予見
している。

第2原理：知識階級は、第1の労働者である。これは科学技術のキャリアー
となった知力労働者の労働者構成の中での第1位の貢献や地位を明らかに述べ
ている。

第3原理：知識を重視し、人材を重んじる。知識と人材の第1位の作用のた
めに、すべての社会の人々が、尊重し合い、学習し合い、育成し合い、依存し
合う価値があるゆえに、必ず科学教育の仕事を重視しなければならないの
である。

(2)科学教育による興国戦略の理論的基礎

これは、邵小平の3原理を核となる邵小平の科学技術教育と経済との一体
化思想である。これは、マルクスの社会再生成理論に対する拡大発展化の理
論である。

社会再生成の活動は、物質の再生産、精神の再生産および人間自らの再生産
の統一体であるとマルクスの社会再生成理論は認める。

我々は、第2番目と第3番目は、主として知識の再生産と知力の再生産であ
ると抽象的に考える。そうであるがゆえに、邵小平による科学教育と経済との
一体化に関する思想は、

第17回 科学教育と経済の統一体

① 科学技術と経済

物質の再生産

知識の再生産

教育系統

科学技術系統

経済系統

② 知識の再生産
に物質的保障と現実的な需要を提供した。

一方で、科学技術と教育は、経済活動における知識の支持と知力の基礎を提供し、経済活動の2つの大きな戦略的支柱になったのである。

系統的理論から見ると、科学教育による興国戦略の基本内容は、教育、科学技術および経済という3つの子システムから構成された大きなシステムとみなされる。

このように、鄧小平による科学教育と経済との一体化思想は、科学教育による興国戦略の理論的基礎になっている。

③科学教育による興国戦略の内容

「科学教育による国際的な競争力は、全面的に科学技術の力であるという思想の実行を指している。教育を基本とするということを堅持し、科学技術と教育を経済の発展と社会の発展の重要な位置に置き、国家の科学技術の力および現実の産業力への転換能力を強め、全民族の科学技術の教育のレベルを向上させ、経済建設を科学技術の進歩への依存や労働者の素質向上の軌道に転換させて、急速に国家の繁栄と旺廃な勢いを実現させるのである。」

鄧小平による科学教育と経済との一体化思想が、科学教育による興国戦略の理論的基礎である以上、正確にかつまた全面的にこの思想の基礎を把握するという視点から、科学教育による興国戦略を深く認識し、有効に実施しながらも、以下のようないくつかの問題も解決していく必要がある。すなわち、

認識上、教育、科学技術および経済との関係がしっかりとした結合や調和の発展の問題を解決すること、実践上、本当に経済建設を科学技術の進歩への依存や労働者の素質向上の軌道に転換させるということ、体制上、改革を通じて教育体制、科学技術体制および経済体制を相互に適応させ、組み合わせてセットにさせるということ。

メカニズム上、科学研究機関、大学および企業との間の横断的連合を実現させ、産業・学校・科学研究機関の共同体を形成させ、科学技術の成果を現実的な産生力に転化させること（第18図）。

第18図　科学教育が経済を振興する1つの論拠　教育・貿易の開放度と電話の密度の経済成長に対する影響より、さらに多くの知識を有する経済のさらに迅速な成長の例

図表：縦軸は、1965年から1995年までの1国の平均の1人当たりGDPの増加率を示している。教育は、人工中の教育を受ける平均年数を示している。開放度は、輸出の貿易総量とGDPの比率を示している。電話の密度は、100人毎の電話の総数を示している。これらの変数の高低は、少なくともそれぞれシフリングした国の平均値の1の基準に比したその乖離の高低を示している。

資料：先手：世界銀行、1998年の世界の発展報告、中国財政経済出版社　1999年版、P.23

3. 科学教育による興国戦略の基本的枠組み

(1)科学教育による興国戦略の基本的目標

第3番目の戦略的目標から見れば、科学教育による国の振興は、早急なる国家の近代化の実現を目標にしなければならないが、知識経済という時代的要請から見れば、国家の知識経済体系の構築を目標にしなければならない。

江沢民は、党の第16期代表大会報告の中で、さらにその事を強調して次のように指摘している。すなわち、「我々は、今後の時期の20年、力を集中させ、全面的に10億人の人民が恩恵を享受するより高いレベルの小康社会を建設し、経済をさらに一層、発展させ、民主をさらに健全なものとさせ、科学教育をさらに進歩させ、文化をさらに繁栄させ、社会をさらに調和のとれるように

- 70 -
九州国際大学 国際関係学論集 第2巻 第2号 (2007)

させ、人民の生活をさらに豊かなものにするのである。」そして、「全面的に裕福かつ安定した社会の建設にとって最も根本的なことは、経済建設中心という政策を堅持し、絶えず社会の生産力を解放し、発展させなければならない。今世紀の初めの20年の経済建設と改革の主要な任務とは、社会主義市場経済体制の改善、経済構造の戦略的調整の進展、基本的工業化の実現、強力な情報化の推進、迅速な現代化的構築、国民経済の急速かつ健全な持続的な発展の維持および絶え間ない人民の生活水準の向上である。」と。

工業化の実現は、依然として我が国の近代化の過程の中で極めて困難な歴史的任務であり、そして情報化は、我が国が直ぐに工業化と近代化を実現するための必然的選択である。情報化による工業化の促進や工業化による情報化の促進を堅持し、科学技术の容量が多く、経済的効果や利益率が高く、資源消耗度は低く、環境汚染は少なく、人工資源の優位が十分に発揮できる新型の工業化の道を歩むのである。

そのためには、必ずも強力な科学教育による国の振興戦略を実施し、国民経済を科学技術の進歩の依存と労働者の素質の向上という間違いのない軌道に転換させなければならないのである。

科学教育による国の振興戦略の実施には、また、国による科学教育の実施と同時に科学技術と教育は、次のような2つの大きな役割を支える方の作用を発揮しなければならない。すなわち、その2つは、科学技術の経済発展促進戦略であり、もう1つは、教育の経済発展促進戦略である。

①科学技術の経済発展促進戦略
改革開放以降の20年間、中国の科学技術事業に歴史的転換が発生した。
それらは、主として以下のような内容である。すなわち、科学技術は、第1の生産力であり、教育を根本にし、科学技術、教育および経済との一体化という指導思想や科学教育による国の振興戦略の方針を確立させた。
経済社会の発展戦略と調和した科学技術の発展戦略、計画および政策を制定した。

全面的に市場経済への転換に適応する科学技术体制や教育体制のワンセット改革を展開した。

以上のような科学技術事業の結果として、我が国の科学技術は、一連の世界を驚愕させる重大な業績を得てし、国民経済の持続的、安定的かつ急速な増加に目覚しい貢献を果たしたのである。

現在、日本の科学技術事業は、既に1つの戦略性を有する全体的配置を確立させており、これは「肝心な所は落ち着かせて動かず、それ以外は開放する」という方針に従って、以下のような3つの段階の下で統一的に計画し、合理的に力配置している。すなわち、経済建設の主要項目の段階では、工業・農業生産の重大な科学技術の問題をめぐり、強力に産業技術や近代化装置を発展させ、科学技術の離散施設計画や技術改造計画を組織的に実施し、先進的技術の「星火」計画や中小企業による新技術開発の基金計画を開発させたり、普及させたりしているのである。

次に、ハイテクの発展段階では、目標を限定し、重点的に選考し、世界的ハイテク最終的な追跡するハイテク研究計画、すなわち、「863計画」を実施し、ハイテクの産業化、商業化および国際化を目標とした「松明計画」を推進させ、自主的知的財産権を代表とするハイテク産業開発区の発展の推進も含まれている。

さらに、基礎研究と応用研究の段階では、すくみこともあれば、すべりでないこともある、という方針を堅持し、人間の知識的視野の向上、知識の蓄積の増加および科学技術の後半の力の蓄積を目的にして、基礎的研究を内容にした「登攀計画」や国家による重点実験室と工事研究センター計画を実施し、個人的興味による自由探求の国家自然科学研究計画を奨励しているのである。

新世紀に突入し、日本の科学技術事業は、既定の戦略方針や全体的な戦略を堅持すべきであり、科学技术が第1の生産力であるという重要な役割を十分に発揮させなければならない。経済構造の戦略的調整を主要方針として、科学技術の進歩に依存して経済の迅速な増大を促進させ、農村の労働力移転を加速し、今後の
20年間で3度にわたって産業構造や就業構造を高度化の方向に向け変化させるのである。

同時に、ハイテク産業を先導とし、基礎的産業や製造業を支柱としながら、サービス業を全面的に発展させることで産業構造を形成させるのである。

ハイテク産業と在来産業との発展関係、資金技術集約型産業と労働集約型産業との関係および仮想経済と実体経済との関係を正しく処理しなければならない。
科学技術が第1の生産力であるという重要な作用を存分に発揮させるには、必ず科学技術の体制改革を深化させ、科学技術の投入を増大させなければならない。

その中で、科学技術経費が投入された３項目の指標とは似たようなものである。すなわち、政府の科学技術支出は、財政支出に占める比率であり、企業の研究・開発経費は、売上高に対する比率であり、全社会の研究・開発経費は、GDPに占める比率であり（その中で、企業は投入の主体であり、通常、60％以上は占めるべきである、）国的に比較可能な目標の合理的基準により投入額が決定され、経費面での科学技術の戦略的目標の実現を保証する必要がある。

「十五」期間中の我が国の科学技術投入額の増加

<table>
<thead>
<tr>
<th>2005年まで</th>
<th>1999年</th>
</tr>
</thead>
<tbody>
<tr>
<td>全社会のR&amp;D経費がGDPに占める比率:1.5％以上</td>
<td></td>
</tr>
<tr>
<td>企業のR&amp;D経費が従業者を対象とした全経費総額の0.27％以上</td>
<td></td>
</tr>
<tr>
<td>ハイテク企業のR&amp;D経費がGDPに占める比率:5％以上</td>
<td></td>
</tr>
<tr>
<td>R&amp;Dに従事する科学者数:20万人</td>
<td></td>
</tr>
</tbody>
</table>

資料提供：国家発展計画委員会

[3] 教育の経済発展促進戦略の目標

教育の経済発展促進戦略の目標は、全民族の科学技術の教養のレベルを向上させ、大量の高素質の革新的人材の集団を育成し、社会主義現代化の実現に向けた知力による支持を提供することである。

改革開放以来、我が国は教育体制の改革、素質教育の推進、教育構造の調整、基礎教育の発展、高等教育の規模の拡大、成人教育の奨励、非識字者の一掃、継続教育の展開および生涯教育のシステムの構築などの面で著しい成果を挙げ、国家の経済社会の発展のために必要な貢献をしてきた。

新世紀に突入し、我が国の教育が直面する主要な問題の一つは、どのようにして経済のグローバル化、情報化および知識化の趨勢に適応するかということであり、知識経済時代の戦略のチャンスをとらえて、教育の体制改革を深化させ、教育の国際化や情報化を推進し、国民全体の知識化を促進させ、中華民族全体の素質を向上させ、中華民族の偉大な復興のための基礎を確立することである。

以下では、重点的に知識経済に関係がある高等教育の改革と発展の問題について考えてみたい。

知識経済とは、知力の経済、いわば教育の経済である。
これは必ずしも全民族の科学文化的素質の普遍的向上を基礎として構築させなければならない。

そうであるが、発達した教育が前提である。
さらにまた、教育は新しい経済の先導的産業なのである。
経済の知識化は、高等教育の大衆化や普及化を必要としている。
一般的に、高等教育の発展は、おおよそ12年間（在校生の適齢人口に占める比率は5％）で、大学教育 (15％～50％) および普及教育 (50％以上) の3段階に分けられる。

そうであるが、必ずしも高等教育を強力に発展させなければならないのである。
高等教育と科学教育による港湾戦略の展開

高等教育を強力に発展させるためには、市場経済体制や知識経済時代に適応しない高等教育の複合型人材を育成することと同時に、基礎理論の発展や革新的実践教育を強化し、科学技術の現実的な生産力への活用を重要視し、「科学者・技術者・企業家」等の集大成の教育をもった科学技術の複合型人材の育成に努力しなければならない（第19図）。

大学生の素質教育の問題に関し、この数年間、知識科学の出現は、素質教育に次のような新しい啓示を提供している。すなわち、知識科学の研究対象は、人類の知識体系と知識活動システムであり、顕性の知識、つまり言葉で伝える知識と、隠性的知識、つまり心で悟る知識を包括している。

以上のような視点を考慮すると、港湾は、学習で説明できる知識を通じて学生に伝える。すなわち、「素質→能力→知識」の「外化」の過程である。

その素質（主として非言語で説明し、心で悟る隠性的知識であり、教師自身と一体となる Know−whoである）の大部分は、直接、言葉では説明不可能であり、教師と学生との間の見えない世界を通過して潜在的に移動し、学生は、ようやく教師の素質の存在を悟るのである。

その能力は、教師自身の行為や活動を通じて部分的に表現することが可能であり、その結果、大学は数多くの学生に伝達されるのである。

その知識（狭義では、言葉で説明することの可能な視覚的知識であり、Know−what、Know−whyを含んでいる）は、教授している間に、その大部分を学生に伝達することが可能であるけれども、教師が学生に説明できる視覚的知識は、ただその教授の有するあらゆる知識（広義では、素質や能力などの

第19図 理工系大学における移動途上の国家新機能構築システムと
知識経済システムの関係
心で語る発言の知識を含んでいる）の比較的少ない部分だけを占めるに過ぎない（第20図（a））。

学生の学習過程は、「知識→能力→素質」の転化過程であり、これは狭義の知識、或い是言葉で説明することの可能な顕性の知識であり、実践を通じてこれからの知識を運用し、いかにして知識を形成させ、それを掌握するか、すなわち、これが能力である。

そして、これが積層を通じて人と一体化する高素質の過程に変わるのである。

学生が先ず得るものは、言葉で説明できる顕性の知識であり、その中の一部の知識は、実践活動の応用を通じて問題を分析したり、解決したりする能力として形成されていくけれども、ただ極めて僅かな部分だけは次第に学生自身の素質に沈殿してしまうことになるのである（第20図（b））。

第20 図 知識の伝達と学習の過程における知識、能力および素質の関係

(a) 教師の伝達過程における知識、能力および素質の関係

(b) 学生の学習過程における知識、能力および素質の関係

以上より理解できることは、素質教育とは、１つの複雑な過程であるということである。

しかしながら、狭義で知識の伝達とは、１つの起点であると同時に基礎でもあり、教師身による全力を傾けた教育、実践の一環、良好な学術的な団体の構築および文化的環境等々の多方向にわたる努力を通じて、ようやく全面的な素質教育の目的を達成することができるのである。

前述した２つの過程から、「知識→能力→素質」という三位一体の「工」という字型構造モデルを引き出すことができる。すなわち、下の１本の縦棒は、広く厚い基礎理論の知識を表わし、中間の１本の縦棒は、しっかりとした気丈な専門能力を意味し、上の１本の横棒は、整った内在的品格の素質を象徴している。

私は、これが１名の成功者の有する普通の基礎構造でありも、有用な人材になる志を持ったすべての若い人の備えるべき基礎構造でもあると考えている。

広く厚い基礎理論の知識は、科学的基礎と人文的基礎という両面の知識を包含しており、人の生存や発展の基礎であり、そして知識の拡大、専門の移転および素質を身につけ基礎でもあるのである。

専門的経験とは、一種の何をし、どのようにするかという基本的技能であり、それは人の仕事の業務と社会の役割に対する基本的役割付けである。

それは専門的知識を身につけながら、実践的訓練を通じて形成されたものである。

１人の人間は、もしも専門となれば人間とは言えず、そして専門的経験が高く、当該研究が深いものであるならば、新しい専門への転換のための一一種の比類なき模範となる事例やモデルを提供することができるが、もしも１つの狭い専門だけに限定されるならば、優秀な人材になれない。

人の品格の素質とは、自ら進んで変化の多い外部環境に適応し、自分の知識や技能を使用して動的に対象を変革しようとする一種の内在する基礎的経験である。
科学技術の知識が、新しい技術開発の活動を通じて、現実的な生産力に転化することが可能なこととも、同様に各国の共通認識にになっている。
しかしながら、各国の科学技術進歩の貢献率、科学技術の成果への転化率および経済発展のレベルは、高い国もあれば低い国も存在している。
そのため、各国の経済体制が異なり、新技術の革新モデルが異なる程度、相違していることもある。
すなわち、
① 旧ソ連の革新モデル：計画経済政府の命令を基準として、「科学＝技術＝生産」の線形の過程により運営された「科学研究の生産連合体」の革新モデルである。
② 米国の革新モデル：自由的な市場経済を基盤とし、企業を主体にして、国家の規模の大きな科学プロジェクト、あるいは軍事技術プロジェクトの民間利用を新技術の開発を動かすネットワークモデルである。
③ EUの革新モデル：政府による適度な関与と市場メカニズムによる資源配置を基盤とし、企業を主体にした国家革新システム、あるいは多国籍共同による革新ネットワークモデルである。
④ 日本の革新モデル：政府による産業政策に誘導された、市場メカニズムを基盤とし、企業を主体にした産・官・学共同による革新の導入、あるいは自主的革新モデルである。
20世紀80年代より前、東ヨーロッパの各国と中国は、旧ソ連の計画経済体制の下で、新技術革新モデルを模倣したり、そのまま採用したりしてきたが、米、ヨーロッパおよび日本の3種類の革新モデルは、すべて市場メカニズムを基盤とし、政府の関与の度合いが異なっているだけであった。
日本の新興工業化諸国・地域は、日本型の産・官・学共同による革新モデルと似たものであったが、政府の産業政策の関与の度合いは、比較的弱いものであった。
異なる革新モデルの効果は、明白な差を有している（第3図を参照）。

VI. 科学教育による国産振興と国家による革新システム

1. 技術革新モデルの国際比較
20世紀後半、科学技術進歩の経済成長に対する貢献がますます大きくなっていくことは、既に議論する必要のない事実である。
2．中国における技術革新モデルの変化

新中国的建国以前、長期にわたり旧ソ連の高度に集中した計画経済体制を模倣するため、企業、大学および科学研究機関は、それぞれが中央各省庁の垂直的指導を受け、指令計画や行政命令により運営され、相互に分離され、科学技术と経済の関係は全く無く、科学技术成果の転化率の低下が発生し、転換の周期も長期化し、また企業の技術革新能力も低下したために経済効率が悪化したのであった。

1978年の中国の改革開放政策の実施以降、経済体制が市場メカニズムの方向に向け転換するにつれて、技術革新モデルもそれに応じて一歩一歩ではあったが転換していったのである。

① 20世紀80年代初頭、中央は、地方や企業に権力を委譲し、多くの地方政府は、企業、大学および科学研究機関での旧ソ連式の科学研究生産連合体方式を推進し、その結果、企業の技術革新能力は飛躍的に強化された。しかしながら、企業は、依然として伝統的計画体制の束縛から抜け出せず、これらの連合体は、依然として科学技術と経済とのつながりを形成させることができず、それらの大部分が名ばかりで実質的な意義をもっていないかった。

② 20世紀80年代末頃から90年代初頭まで、計画に基づいた商品経済体制が実現され、日本の産・官・学の一体化体制が参考にされ始め、政府は、ハイテク産業地域を設立し、幅広く産・学・科学研究機関の統合した技術革新モデルを推進し、科学技術的成果による商品化や産業化を促進させ、その結果、民営の科学技術企業が急速に発展するようになり、国有企業は、困難が次々と重なり、真の市場主体や革新主体にはなっていないのである。

③ 20世紀90年代の中後期、明確に社会主義市場経済体制の構築が提出され、現代的企業制度が推進され、さらにそれに応じた科学技術や高等教育の体制改革が実施され、政府の関連部門は、産・学・科学研究機関による共同研究の総括を基礎として、OECDの経験も参考にされ始め、中国の特色を有し、企業を主体とした国家による革新システムが構築されるようになったのである。

劉則萬「知識経済と科学技術による興国戦略II」完（唐、向紅、山下聡男）

中国の経済体制改革や技術革新モデルの転換により、科学技術進歩の推進や技術革新による経済成長への作用の向上という現実が、改革開放前の状況とは鮮明な対比を形成させたことを示している（第4図を参照）。

しかししながら、先進国の技術や進歩的貢献の50%～80%の状況を比較すると、中国とはまだ依然として大きな格差が存在している。

「六五」期間以降では、我が国の経済成長の中で資本投入の貢献率は第1位に位置し、大いに技術の進歩的貢献を図っている。

我々は、既に「科学技術が第1の生産力である」（郎平の言葉）ということを理解してきたが、科学技術の知識は、まだ依然として真に現実的な第1の生産力には転換していないのである。

これこそが、なぜ国家による革新システムを構築する必要があるのかという問いに対する答えである。

3．国家による革新システムの基本的枠組み

国家による革新システムは、OECDが構成国の技術革新成功モデルを総括し、提出した知識経済時代を迎える上での1つの重要な措置である。

その目的は、革新を通じて有効的に知識を総合に転化させ、科学技術の成果を実現的生産力へ転化させて、国家による科学技術の競争力を総合的国力向上させることである。

所謂、国家による革新システムとは、一般的に言うならば、企業を主体にし、技術革新を中核として、革新活動に参加する企業、大学および科学研究機関から構成された共同体が、政府の予算的政策の導入の下で、市場メカニズムを参考にした資源配置を実施し、自律的な知的所有権の革新的成果を図るために形成された産・学・科学技術研究機関の一体化した組織や制度のネットワークである。

市場経済の転化という角度から見ると、国家による革新システムの骨組みの内容には、主として次のようなものが含まれている。すなわち、
① 市場運行メカニズム
これは革新システム構築の前提であり、革新的活動に役立つ知識、情報、技術、資本および人材などの各種の革新的資源の自由な移動、合理的配置の柔軟な開放的市場システムおよびゲームのルールを構築しなければならない。
② 企業の主体的役位
企業、とくに国有企業は、伝統的工場制度から現代的会社制度への転換を加速し、独立した法人経営の主体的地位を確立し、それにより科学技術に対する経費の投人や技術革新活動の主体となるのである。
③ 産・学・研共同体
科学研究所関と大学は、革新的活動のための知識的支援と知的支援という2つの大きな戦略的支点を提供し、企業とさまざまな形式の産・学・研共同体を結成させるべきであり、企業の革新的活動のために絶えず知識の源泉や革新的人材を提供したり、技術研修を実施したりするべきである。
④ 政府によるコントロール機能
近代的市場経済という条件下での技術革新活動は、政府によるマクロコントロール作用の発揮を必然として必要とし、経済の転換期での政府による特別に良好な政策的環境の構築や特有の制度を活用した各種の革新的力の統合を推進することが必要である。
⑤ 仲介サービスシステム
各種仲介機構は、革新システム中での革新的情報を結び、知識移動を加速させ、革新的サービスを実施する機能であることに絶対必要とし、革新的活動の正常な運行や革新成果の拡散を促進させるのである。
⑥ 投資システムの革新
これは各級政府による財政支出中の科学技術費の比率を引き上げ、企業の技術開発費の増大の奨励および特別な民間のリスク投資ファンドと機関の設立を含んでいる。科学技術知識とベンチャー・キャピタルが結合されれば、自主的な知的所有権の革新的成果をもたらすことが可能である。

現在、人々の国家による革新システムに対する認識には、一定の認識の落とし穴が存在している。すなわち、それは現在する科学研究機関、大学および企業が、それぞれ知識の生産、知識の伝播および知識の応用に従事している自然的分業により構成される社会知識活動システムを、国家による革新システムであると誤解していることである。

国家による革新システムが、必ず有り合わせの社会知識活動システムを基礎として、前提としていることは間違いいない。

しかしながら、このような社会的分業により形成された分散的革新機構や力は、統合的な体制改革や革新を通過しなければ、全体的革新システムへの整理統合は難しいのである。

技術革新は、国家による革新システムの中心の一環である。

前述したように、国家による革新システム中の革新とは、技術革新および関連した生産要素である資本や人材などの組み合わせであり、技術革新による製品、技術、資源、市場、管理、組織および制度などをめぐって革新されて構成されたネットワークのシステムである。

そのため、革新システムの骨組みの設計や構成は、すべて新技術開発の中軸線を基にして関連した組織統合が実施されるべきであり、その結果として関連した制度のネットワークが形成されるのである。

国家全体の技術革新の能力、レベルおよび効率を向上させるために、新技術の開発、組織の革新および制度の革新が組み合わさるわけではない、それによって科学技術の知識と各種の革新的資源が、有効的に産業経済の優位や国際競争の優位の転化されるのである。

国家による革新システムの中で、革新は、系列化、制度化、加速化および国际化などの新しい特徴を有している。

持続的の一連の新技術の開発活動は、経済の安定的な成長を招来させるのである。
コラム ムーアの法則：持続的技術革新の典型の一例

1965年、世界的コンピュータ産業の巨頭、インテルの創始者の一人である技術者ムーア（Gordon Moore）は、講演の準備中、次のような発見をした。すなわち、持続的革新は、コンピュータのプロセッサー能力を18ヶ月～24ヶ月ごとに倍増させることを。この法則は、今なお、何度試しても確実である（第22図を参照）。1つのチップ上のトランジスターは、1971年の4004個から1998年のPentium IIプロセッサー上の7500万個にまで増加した。2000年11月20日に、インテルのPentium IVプロセッサーが登場し、そのスピードは1.4千メガハertzと1.5千メガハertzであり、それを使ったコンピュータは、画質の放送スピードが最新型のPentium IIIより47%も速かったのである。このプロセッサーNetburstは、全く新しい内部の構造設計を採用している。インテルは、5年以内にプロセッサーのスピードを10千メガハertzまで向上させる可能性がある（第22図）。

第22図 持続的技術革新の1例：ムーアの法則図

4. 国家による革新システムの構築

現在、我が国が、国家による革新システムの構築や統合に対して直面する主要な問題は次の通りである。すなわち、

企業の技術革新に対する主体的地位は、まだ依然として筍に確立されていない。産・学・研の結合の度合いが不十分であり、科学技術集団としての力が分散されている。

政府の行動と市場メカニズム内の革新との相互関係に、まだ依然としてバランスが取れていない。

伝統的体制と市場体制が共存し、革新的資源が、市場メカニズムを通じて合理的に配置されていない。

革新的活動の依頼する仲介機構やサービスシステムが、極めて薄弱である。

経済体制、科学技術体制および高等教育体制というワンセットの改革が、まだ依然として完全には所定の位置に配置されていないということである。

(1) 国家による革新システム構成中の政府の職能

政府は、一方で良好な制度的環境を整備し、共同体の産・学・研の市場条件下での知識・知力および資本の横断的移動や合理的配置を主導し、仲介となるサービス機構を育成して、革新的活動のサービスシステムを形成させるのである。

さらに政府は、もう一方で、政策手段や計画的指導を用借して、重点的に産業の技術革新プロジェクトを集積、国家級の革新システムの模範的戦略として、産・学・研が共同して参加する実体化組織を構築し、三者利害関係を調和させるのである。

(2) 国家による革新システムの政策的措置の構築

科学研究による国の振興戦略を実施する過程で、国家による革新システムの再編や統合の実行には、さまざまな対応した政策や措置を講じ、次のような市
場経済体制下での国家による革新システムの政策法規システムや制度のネットワークを形成させなければならない。すなわち、
支柱産業と重点的科学技术領域産業のための政策と科学技术政策を育成する。
R&D活動、技術革新および科学技术的成果の産業化への財政、金融およびリスク投資政策を支持しなければならない。
知的不動産やその他の無形資産保護政策の法規を整備しなければならない。
中小企業および産・学・研の共同による技術革新のための税収上の奨励策を実施しなければならない。
科学技術的人材の移動を促進させ、海外留学生の帰国後の起業奨励策を実施しなければならない。
R&Dと技術革新に対する国際協力と関連した政策を促進させなければならないということである。

＜注＞
①「中国共産党中央、国务院の科学技术の進歩を速める決定に関して」（1995年3月6日）。